
Reprint Nos.

2. 1952 Birds on Palma and Gomera. Ibis, 94, 68-84. Results of a survey on these islands.

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Journal/Proceedings</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.</td>
<td>1957</td>
<td>The co-ordination of the protective retraction of coral polyps. Phil. Trans. R. Soc. B. 240, 495-529.</td>
</tr>
</tbody>
</table>
32. 1963 Proprioceptors, bristle receptors, efferent sensory impulses, neurofibrils and number of axons in the parapodial nerve of the polychaete Harmothoe. Proc. R. Soc. 157, 199-222.

34. 1964 Non-specific systems and differences between neurons in lower animals in "Comparative Neurochemistry". Ed. S. Richter, Pergamon Press.

42. 1965 Intracellular action potentials associated with the beating of the cilia in ctenophore comb plate cells. Nature, 205, 602.

48. 1965 (with D.J. Rutherford)

82. 1968 (with M. Burrows) Motoneuron discharges to the eyecup muscles of the crab Carcinus, J. exp. Biol. 49, 251-267.

83. 1968 (with M. Burrows)

84. 1968 (with M. Burrows)

85. 1968 (with M. Burrows)
The onset of the fast phase in the crab's optokinetic response of the crab, Carcinus, J. exp. Biol. 49, 299-313.

86. 1968 (with M. Burrows)

90. 1968 A note on the number of retinula cells of Notonecta. Z. vergl. Physiol. 61, 259-262.

92. 1969 (with J. Barnes)
Interaction of the movements of the two eyecups in the crab Carcinus. J. exp. Biol. 50, 651-671.

93. 1969 (with J. Barnes)
Two dimensional records of the eyecup movements of the crab Carcinus maenas. J. exp. Biol. 50, 673-682.

94. 1969 (with S. Tamm)

95. 1969 Unit studies of the retina of dragonflies. Z. vergl. Physiol. 62, 1-37.

96. 1969 The eye of Dytiscus (Coleoptera). Tiss. & Cell, 1, 425-442.

97. 1970 (with B. Walcott & A.C. Ioannides)

98. 1970 (with I.A. Meinertzhagen)
The accuracy of the patterns of connexions of the first- and second-order neurons of the visual system of Calliphora. Proc. R. Soc. B. 175, 69-82.

99. 1970 (with I.A. Meinertzhagen)
The exact neural projection of the visual fields upon the first and second ganglia of the insect eye. Z. vergl. Physiol. 66, 369-378.

100. 1970 (with S. Tamm)

104. 1971 (with C. Giddings)
The ommatidium of the termite Mastotermes darwiniensis. Tiss & Cell, 3, 463-476.

105. 1971 (with B. Walcott)

106. 1971 (with C. Giddings)

107. 1971 (with C. Giddings)

109. 1971 (with P.M. Shelton and I.A. Meinertzhagen)
Reconstruction of synaptic geometry and neural connections from serial thick sections examined by the medium high voltage electron microscope. Brain Res. 29, 373-377.

110. 1971 (with S.B. Laughlin)

111. 1972 (with B.W. Ninham and M.O. Diesendorf)

114. 1972 (with C. Giddings & G. Stange)
The superposition eye of skipper butterflies. Proc. R. Soc. B. 182, 475-495.
115. 1972 (with A.W. Snyder)
The optical function of changes in the medium surrounding the cockroach rhabdom. J. comp. Physiol. 81, 1-8.

117. 1973 (with M.O. Diesendorf)
Two models of the partially focused clear zone compound eye. Proc. R. Soc. B. 183, 141-158.

118. 1973 (with R.G. Butler)

119. 1973 (with R.G. Butler)

124. 1974 (with M. Burrows)

125. 1974 (with M. Burrows)
The organization of inputs to motoneurons of the locust metathoracic leg. Phil. Trans R. Soc. Lond. B. 269, 49-94.

126. 1974 "Insect Vision", section of "Insects of Australia", Published by CSIRO.

127. 1975 (with M.O. Diesendorf)

128. 1975 (with V.B. Meyer-Rochow)

130. 1975 (with A. Ioannides)

132. 1975 (with K. Mimura)

133. 1975 (with K. Mimura & Y. Tsukahara)

134. 1975 (with K. Mimura & R.C. Hardie)

135. 1977 (with M. McLean, G. Stange, & P.G. Lillywhite)

136. 1977 (with Y. Tsukahara)

138. 1976 (with I. Henderson)

139. 1977 (with Y. Tsukahara & D. Stavenga)
Afterpotentials in dronefly retinula cells. J. comp. Physiol. 114, 253-266.

140. 1977 (with Y. Tsukahara)

141. 1977 Insects which turn and look. Endeavour, New Series V.11, No.1, 7-17.

143. 1977 (with Y. Tsukahara)

144. 1978 (with M. McLean)

146. 1978 (with Y. Tsukahara)
The distribution of bumps in the tail of the locust photoreceptor afterpotential. J. exp. Biol. 73, 1-14.

147. 1977 Mechanistic teleology and explanation in neuroethology. Biosci. 27(11), 725-732 (reprint of No.145).

156. 1980 (with L. Marcelja & J. Duniec)

158. 1981 (J. Duniec & L. Marcelja)

159. 1981 (with 10 others)

162. 1983 (with L. Marcelja & R. Jahnke)

163. 1983 (with L. Marcelja, R. Jahnke & P. McIntyre)

164. 1983 (with L. Marcelja, R. Jahnke & T. Matic)

165. 1984 (with L. Marcelja & R. Jahnke)

166. 1985 (with D. Osorio & W.G. Wu)

182. 1991 (with Sobey, P) An artificial seeing system copying insect vision. J. Optoelectronics. 6, 177-193.

184. 1991 Ratios of template responses as the basis for semivision. Phil. Trans. R. Soc. Lond. B. 331, 189-198.

186. 1991 (with Shi Jian). The HI neuron measures change in velocity irrespective of contrast frequency, mean velocity or velocity modulation frequency. Phil. Trans. R. Soc. Lond. B. 331, 205-211.

191. 1992 (with Zhang & Lehrer) Bees can combine range and visual angle to estimate absolute size. Phil. Trans. R. Soc. Lond. B. 337, 49-57.

204 1996 The relation between pattern and landmark vision of the honeybee (Apis mellifera). J. Insect Physiol. 42, 373-381.

205 1996 Pattern vision of the honeybee (Apis mellifera): the significance of the angle subtended by the target. J. Insect Physiol. 42, 693-703.

210 1997 Evolution of vision as illustrated by the honeybee. Paper L071.01 33rd International Congress of Physiology. St Petersburg.

212 1997 Vision of the honeybee (Apis mellifera) for patterns with one pair of equal orthogonal bars. J. Insect Physiol. 43, 741-748.

216 1999 Two-dimensional pattern discrimination by the honeybee. Physiological Entomology. 24, 197-212.

217 1999 Pattern discrimination by the honeybee (Apis mellifera) is colour blind for radial/tangential cues. J. Comp. Physiol. A 184, 413-422.

Pattern vision of the honeybee (*Apis mellifera*): discrimination of location by the blue and green receptors. Neurobiology of Learning and Memory 74, 1-16.

Visual discrimination of radial cues by the honeybee (*Apis mellifera*). Journal of Insect Physiology 46, 629-645.

Pattern vision of the honeybee (*Apis mellifera*): What is an oriented edge? J. Comp. Physiology A 186, 521-534.

Seven experiments on pattern vision of the honeybee, with a model. Vision Research 40, 2589-2603.

The relevance of honeybee vision to the design of seeing systems. ICARCV 7th International Conf. on Control, Automation, Robotics and Vision. Nanyang Tech. Uni. Singapore Dec 2002

Discrimination of single bars by the honeybee (*Apis mellifera*). Vision Research, 43, 1257-1271.

The visual system of the honeybee (*Apis mellifera*): the maximum length of the orientation detector. J Insect Physiol. 49, 621-628.

Visual resolution of gratings by the compound eye of the bee (*Apis mellifera*). J. Exp. Biol. 206, 2105-2110.

Visual discrimination by the honeybee (*Apis mellifera*): the position of the common centre as the cue. Physiological Entomology 28, 132-143.

Visual resolution of the orientation cue by the honeybee (*Apis mellifera*). J Insect Physiol. 49, 1145-1152.

What the honeybee sees: a review of the recognition system off *Apis mellifera*. Physiological Entomology 30, 2-13.

The spatial resolutions of the apposition compound eye and its neurosensory feature detectors: observation versus theory. J Insect Physiol. 51, 243-266.

238 2006 Some labels that are recognized on landmarks by the honeybee (Apis mellifera). Journal of Insect Physiology 52, 1254-1271.

239 2007 The preferences of the honeybee (Apis mellifera) for different visual cues during the learning process. Journal of Insect Physiology 53, 877-889.

246 2015 How bees distinguish Black from White. Eye and Brain. 6(1); 9-17.

247 2015 How bees distinguish a pattern of two colors from its mirror image. Plos One DOI: 10, 1371/journal. Pone.0116224

252 2015 Perahu Layar Nusantara. Ombak (Anggota IKAPI), Penyunting: Aditya Pratama Yogyakarta: Penerbit Ombak, : redaksiombak@yahoo.co.id

254 2016 Do bees distinguish colours? *Australian National University Reporter*. Issue 10/02/2016 Volume 47 No. 1

255 2016 The unsuspecting science: a review of anomalies in the 20th century theory of trichromatic colour vision in the honeybee.